检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王丹阳[1] 李成华[2] 张本华[1] 杨玉芬[1] 佟玲[1]
机构地区:[1]沈阳农业大学工程学院,沈阳110161 [2]沈阳理工大学机械工程学院,沈阳110168
出 处:《农业工程学报》2008年第7期114-118,共5页Transactions of the Chinese Society of Agricultural Engineering
摘 要:为提高稻谷干燥爆腰率增值预测的精度,采用自适应神经模糊推理系统(ANFIS)建立了稻谷深床干燥爆腰率增值预测模型。经试验数据检验,爆腰率增值预测值的最大误差为14.57%,最小误差为1.68%,平均误差为5.68%预测精度达到了94.32%。结果分析表明,该模型泛化能力强,预测精度高且可简便预测干燥参数对稻谷干燥爆腰率增值的影响,有助于准确认识爆腰率增值随干燥参数的变化规律。In order to improve the prediction accuracy of additional crack percentage for paddy rice drying in a deep fixed-bed, Adaptive-Network-based Fuzzy Inference System (ANFIS) was applied to establish a prediction model for the additional crack percentage. Through verification of the prediction model, it was determined that the maximum prediction error was 14.57%, the minimum prediction error was 1.68%, the average prediction error was 5.68% and the prediction accuracy reached 94.32%. The results of analysis show that the prediction accuracy and the generalization of the prediction model are very high, and the model can predict the effects of drying parameters on additional crack percentage conveniently, which contributed to understanding of variation of additional crack percentage impacted by drying parameters accurately and provided the foundation for selecting drying parameters properly and for controlling drying quality.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15