检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电子与信息学报》2008年第8期1923-1927,共5页Journal of Electronics & Information Technology
基 金:国家863项目(2006AA10Z313);国家自然科学基金(60225015);国防应用基础研究基金项目(A1420461266);2005年教育部科学研究重点基金项目(105087)资助课题
摘 要:该文针对K平面聚类算法KPC(K-Plane Clustering)对噪声点敏感的缺陷,通过引入隶属度约束函数,推导出鲁棒的改进分割K平面聚类算法IFP-KPC(Improved Fuzzy Partitions for K-Plane Clustering),并利用Voronoi距离对IFP-KPC算法的鲁棒性进行了合理解释。实验结果表明IFP-KPC算法较之于KPC算法具有更好的聚类效果。A new robust Improved Fuzzy Partitions for K-Plane Clustering (IFP-KPC) algorithm is proposed. The proposed algorithm can reduce the sensitivity of the k-plane clustering algorithm to noises in real datasets. Also the distances to the Voronoi cell are used to give a reasonable explanation for the robustness of IFP-KPC. Experimental results demonstrate the effectiveness of IFP-KPC.
关 键 词:K平面聚类 改进模糊分割 Voronoi距离 鲁棒性
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15