检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学计算机科学与工程系上海分布式实验中心,上海200030
出 处:《计算机应用与软件》2008年第8期65-67,共3页Computer Applications and Software
基 金:上海市科学技术委员会科研计划项目课题(05dz15005)
摘 要:在数据共享的同时,如何保证数据的隐私性是一个重要的问题。泛化方法是数据隐私保护的一种重要方法,但现有的泛化算法不能处理连续属性,数据错误率比较高。在K-anonymity模型基础上,提出了一种扩展泛化算法EGA(Extended Generalization Algorithm),该算法在满足给定K值的条件下,用相对不具体的值最小限度地替换敏感数据,并实现了对离散属性和连续属性的处理。实验结果表明,与现有泛化算法相比,提出的算法具有运行效率高、数据错误率低、能保持敏感数据分类特性等优点。In the current information society, one important issue is the protection of data privacy during data sharing. Generalization is an important method of data privacy protection,but the existing generalization algorithms cannot process continuous attributes and produce a high data error ratio. The algorithm EGA ( Extended Generalization Algorithm) based on the K-anonymity model is proposed. Given a specific K value ,the algorithm partially replaces the sensitive data with data that are less specific as little as possible, and it can handle both discrete and continuous attributes. The experimental results show that compared with the existing generalization algorithms, EGA runs faster and produces a lower data error ratio. The classification character of the sensitive data can also be well preserved after generalization.
关 键 词:K-ANONYMITY 数据隐私 数据泛化
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229