关于叶果洛夫定理和Lebesgue定理的扩展  

Expansion about EropoB and Lebesgue

在线阅读下载全文

作  者:阎旭[1] 

机构地区:[1]山东师范大学数学科学院,济南250014

出  处:《科学技术与工程》2008年第17期4953-4955,共3页Science Technology and Engineering

摘  要:叶果洛夫定理和Lebesgue定理中共有的条件"fm(m=1,2,…)是E上几乎处处有限的可测函数"可以减弱为"fm(m=1,2,…)是E上的可测函数";"f有限a.e于E"可减弱为"f有限a.e于E或f无限a.e于E"。给出在这种条件减弱的情况下三种收敛的关系。The strength of hypothesis in both EropoB Theorem and Lebesgue Theorem-" The function fro (m = 1, 2… ) which is finite almost everywhere on E( abbreviated to fm is finite a. e on E)is measurable. "-can be weakened as "fm ( m = 1,2…) is a measurable function on E" ; The strength of the hypothesis"f is finite a. e on E" can be weakened as" f is finite a. e on E orf is infinite a. e on E". Under this condition that the strength of the hypothesis is weakened, the relationships are analyzed among these three kinds of convergence.

关 键 词:几乎处处收敛 近一致收敛 依侧度收敛 

分 类 号:O174.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象