检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:阎旭[1]
出 处:《科学技术与工程》2008年第17期4953-4955,共3页Science Technology and Engineering
摘 要:叶果洛夫定理和Lebesgue定理中共有的条件"fm(m=1,2,…)是E上几乎处处有限的可测函数"可以减弱为"fm(m=1,2,…)是E上的可测函数";"f有限a.e于E"可减弱为"f有限a.e于E或f无限a.e于E"。给出在这种条件减弱的情况下三种收敛的关系。The strength of hypothesis in both EropoB Theorem and Lebesgue Theorem-" The function fro (m = 1, 2… ) which is finite almost everywhere on E( abbreviated to fm is finite a. e on E)is measurable. "-can be weakened as "fm ( m = 1,2…) is a measurable function on E" ; The strength of the hypothesis"f is finite a. e on E" can be weakened as" f is finite a. e on E orf is infinite a. e on E". Under this condition that the strength of the hypothesis is weakened, the relationships are analyzed among these three kinds of convergence.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171