检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜云海[1] 乐金朝[2] 吕存景[1] 张迪[1]
机构地区:[1]郑州大学工程力学系,郑州450001 [2]郑州大学环境与水利学院,郑州450001
出 处:《计算力学学报》2008年第4期534-538,共5页Chinese Journal of Computational Mechanics
基 金:河南省杰出青年科学基金(0212001800)资助项目
摘 要:根据含圆形嵌体平面问题在极坐标下的弹性力学基本解,使用Betti互换定理,在有限部积分意义下将问题归结为两个以裂纹岸位移间断为基本未知量、对于Ⅰ型和Ⅱ型问题相互独立的超奇异积分方程,对含圆形嵌体弹性平面中的径向裂纹问题进行了研究。根据有限部积分原理,建立了问题的数值算法。计算结果表明,嵌体半径、裂纹位置及材料剪切弹性模量等都对裂纹应力强度因子具有较为明显的影响。A radial crack in an elastic plane with a circular inclusion is investigated by use of a hyper-singular integral equation method. Based on the fundamental solution of a plane with a circular inclusion under a polar co-ordinate, and using Betti's reciprocal theorem and the finite-part integral concepts, two independent hyper-singular integral equations for the crack problems of model Ⅰ and model Ⅱ are derived, in which the unknown functions is displacement discontinuities on the crack surface. Then, a numerical method for the solution of the hyper-singular integral equations are proposed, and the crack displacement discontinuities are approximated by products of a series of the second type of Chebyshev's polynomials and a basic density function, which exactly express the singularities of stress near the crack tips. The numerical solutions for the stress intensity factors of some examples are given. From the numerical results, it is shown that the stress intensity factors of a crack are greatly varied with the radius of a circular inclusion, the position of crack and the shear elastic module of a circular inclusion.
关 键 词:圆形嵌体 经向裂纹 超奇异积分方程 应力强度因子
分 类 号:O319.56[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112