Wilson-θ法两种积分格式的稳定性探讨  被引量:7

Stability discussion of two integration formats for Wilson-θ Method

在线阅读下载全文

作  者:方德平[1] 王全凤[1] 

机构地区:[1]华侨大学土木工程学院,福建泉州362021

出  处:《计算力学学报》2008年第4期539-541,共3页Chinese Journal of Computational Mechanics

基  金:国家自然科学基金(50578066/E080507);福建省自然科学基金(E0410023E0540005);厦门市科技计划项目(3502Z20074039)资助项目

摘  要:Wilson-θ法分为加速度未经过和经过动力平衡方程修正的Wilson-θ①法和Wilson-θ②法;推导了单自由度体系的Wilson-θ①、②法的状态传递算子,由传递算子的谱半径来判断Wilson-θ①、②法的稳定性。计算结果表明:Wilson-θ①法的稳定性是无条件的,Wilson-θ②法的稳定性不是无条件的;并给出了Wilson-θ②法的稳定范围。There remain two kinds of Wilson-θ methods, namely, Wilson-θ (1) and (2) methods. In Wilson-θ (1) method, the accelerations are not modified by the dynamic equilibrium equations at the time t+ △t; in Wilson-θ (2) method, the accelerations are modified. The modal superposition method can reduce the response of a multi-degree-of-freedom (MDOF) system to the superposition of the single-degree-of-freedom (SDOF) system responses for each mode, thus the stability for a SDOF system is equivalent to the stability for a MDOF system. In order to simplify the equation expression, only SDOF system is considered. The amplification matrixes of Wilson-θ (1) and (2) methods for SDOF system are derived. The stabilities of Wilson-θ (1) and (2) methods are examined hy the spectral radii of the amplification matrixes. The stability of Wilson-θ (1) method is unconditional. The calculation results indicate: the stability of Wilson-θ (2) method is not unconditional. The stability ranges of Wilson-θ (2) method are also put forward. The conclusion corrects a mistake in some references where both Wilson-θ (1) and (2) methods are wrongly considered as unconditional stability.

关 键 词:WILSON-Θ法 稳定性 状态传递算子 谱半径 

分 类 号:TU311.3[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象