检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算力学学报》2008年第4期539-541,共3页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金(50578066/E080507);福建省自然科学基金(E0410023E0540005);厦门市科技计划项目(3502Z20074039)资助项目
摘 要:Wilson-θ法分为加速度未经过和经过动力平衡方程修正的Wilson-θ①法和Wilson-θ②法;推导了单自由度体系的Wilson-θ①、②法的状态传递算子,由传递算子的谱半径来判断Wilson-θ①、②法的稳定性。计算结果表明:Wilson-θ①法的稳定性是无条件的,Wilson-θ②法的稳定性不是无条件的;并给出了Wilson-θ②法的稳定范围。There remain two kinds of Wilson-θ methods, namely, Wilson-θ (1) and (2) methods. In Wilson-θ (1) method, the accelerations are not modified by the dynamic equilibrium equations at the time t+ △t; in Wilson-θ (2) method, the accelerations are modified. The modal superposition method can reduce the response of a multi-degree-of-freedom (MDOF) system to the superposition of the single-degree-of-freedom (SDOF) system responses for each mode, thus the stability for a SDOF system is equivalent to the stability for a MDOF system. In order to simplify the equation expression, only SDOF system is considered. The amplification matrixes of Wilson-θ (1) and (2) methods for SDOF system are derived. The stabilities of Wilson-θ (1) and (2) methods are examined hy the spectral radii of the amplification matrixes. The stability of Wilson-θ (1) method is unconditional. The calculation results indicate: the stability of Wilson-θ (2) method is not unconditional. The stability ranges of Wilson-θ (2) method are also put forward. The conclusion corrects a mistake in some references where both Wilson-θ (1) and (2) methods are wrongly considered as unconditional stability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62