检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁雷[1] 李春娥[1] 储少林[1] 严建武[1] 陈全功[1]
机构地区:[1]兰州大学草地农业科技学院,甘肃兰州730020
出 处:《草业科学》2008年第8期26-30,共5页Pratacultural Science
基 金:国家高技术研究发展计划(〔863计划〕"草业生产数字化管理关键技术研究"(2006AA10Z241)
摘 要:传统的积雪范围和厚度监测是通过气象台站的定时观测,其缺点是:地面观测资料区域代表性有限和地面气象台站分布很均匀。遥感技术可以弥补传统观测的不足,中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,MODIS)数据具有高空间分辨率、高时间分辨率,地球观测系统先进微波扫描辐射计(Advanced Microwave Scanning Radiometer-EOS,AMSR-E)数据具有不受云层影响的特点。分析冷季深入对AMSR-E影像积雪判别的影响,最终得出,在内蒙古地区随着冷季的深入,AMSR-E将MODIS影像上无雪像元和有云像元判别为有雪的比例越来越高,最高分别达34.22%和28.29%。两者同时判别为有雪像元的比例也越来越高,最高达33.66%。The traditional method for monitoring the scope and thickness of snow was to observe regularly through the meteorological stations. The problem was that the representation from ground-based observations and information was limited. Remote sensing technology could overcome the problem because MODIS (Moderate Resolution Imaging Spectroradiometer) data were high spatial resolution and hi af di gh time resolution and AMSR-E (Advanced Microwave Scanning Radiometer-EOS) letted by cloud. This paper was aimed to explore the impact of seasonal changes on scriminate. The result indicated that more pixels without snow and pixe data were not AMSR-E snow s with cloud were identified through AMSR-E to those covered by snow along with the cold season, and the proportion reached 34.22% and 28.29% respectively.
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置] P426.635[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15