检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机与应用化学》2008年第8期981-984,共4页Computers and Applied Chemistry
基 金:福建省教育厅资助项目(JB07055).
摘 要:为提高二级结构预测精度,试用神经网络集成法预测。针对BRNN网络结构复杂、收敛时间长、参数多的缺点,本文提出一种改进的新BRNN网络,删除BRNN左、右子网络的隐层,直接将输入连接到状态层。并采用BP改进算法中的弹性算法训练。以90条蛋白质序列共15 377个氨基酸交叉验证,仿真结果表明新网络可以有效地缩短收敛时间,新BRNN集成预测二级结构效果较好。To improve the performance of secondary structure prediction, Bidirectional Recurrent Neural Network (BRNN) Ensemble was applied. Because BRNN has superflous parameters, complicated structure and slow convergence, this paper gave an improved BRNN structure by deleting it's right and left hidden-layer and took the RPROP algorithm to train the network. The data of 90 sequences of 15 377 amino acids were used to test the method. The experiment results showed that the improved network could highly increase the convergent speed and improved BRNN ensemble achieved better performance on secondary structure prediction.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28