非线性关联系统自适应神经网络输出反馈分散控制  被引量:3

Adaptive neural network output-feedback decentralized control for nonlinear interconnected systems

在线阅读下载全文

作  者:陈为胜[1] 李俊民[1] 陈国培[1] 

机构地区:[1]西安电子科技大学应用数学系,陕西西安710071

出  处:《控制理论与应用》2008年第4期650-654,共5页Control Theory & Applications

基  金:国家自然科学基金(60374015;60775013).

摘  要:针对一类带有完全未知关联项的非线性大系统,提出一种自适应神经网络输出反馈分散控制方法.采用神经网络逼近未知的关联项,因此对关联项常做的假设如匹配条件,被上界函数所界定等不再要求.在神经元输入中采用参考信号取代关联信号,从而成功地避免了对关联信号的微分.保证了闭环系统所有信号半全局一致最终有界,证明了跟踪误差收敛于一个包含原点的小残集.An adaptive neural network output-feedback decentralized control scheme is proposed for a class of largescale nonlinear systems with completely unknown interconnections. Neural networks are employed to approximate to the unknown interconnections, eliminating the common assumptions on interconnections such as matching condition, being bounded by upper bounding functions. By replacing the interconnected signals in neural inputs with the reference signals, the differentiation of interconnected signals is then successfully avoided. Moreover, all signals in the closed-loop system are guaranteed to be semi-globally uniformly ultimately bounded, and the tracking errors are proved to converge to a small residual set around the origin.

关 键 词:非线性大系统 神经网络 分散输出反馈控制 积分反推 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象