CONJUGATE-SYMPLECTICITY OF LINEAR MULTISTEP METHODS  被引量:2

CONJUGATE-SYMPLECTICITY OF LINEAR MULTISTEP METHODS

在线阅读下载全文

作  者:Ernst Hairer 

机构地区:[1]Section de Mathématiques,Univ.de Genève

出  处:《Journal of Computational Mathematics》2008年第5期657-659,共3页计算数学(英文)

基  金:the Swiss National Science Foundation, project No.200020-121561

摘  要:For the numerical treatment of Hamiltonian differential equations, symplectic integrators are the most suitable choice, and methods that are conjugate to a symplectic integrator share the same good long-time behavior. This note characterizes linear multistep methods whose underlying one-step method is conjugate to a symplectic integrator. The bounded- hess of parasitic solution components is not addressed.For the numerical treatment of Hamiltonian differential equations, symplectic integrators are the most suitable choice, and methods that are conjugate to a symplectic integrator share the same good long-time behavior. This note characterizes linear multistep methods whose underlying one-step method is conjugate to a symplectic integrator. The bounded- hess of parasitic solution components is not addressed.

关 键 词:Linear multistep method Underlying one-step method Conjugate-symplecticity Symmetry. 

分 类 号:O241.8[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象