空间框架结构弹性动力学非传统Hamilton型变分原理  被引量:1

THE UNCONVENTIONAL HAMILTON-TYPE VARIATIONAL PRINCIPLES FOR ELASTODYNAMICS OF SPACE FRAME STRUCTURES

在线阅读下载全文

作  者:姜凤华[1] 罗恩[1] 

机构地区:[1]中山大学应用力学与工程系,广州510275

出  处:《动力学与控制学报》2008年第3期223-228,共6页Journal of Dynamics and Control

基  金:国家自然科学基金(10172097;10772203);高校博士点科研基金(20030558025)资助项目~~

摘  要:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩提出的一条简单而统一的新途径,系统地建立了空间框架结构弹性动力学的各类非传统Hamilton型变分原理.文中首先给出空间框架结构弹性动力学的广义虚功原理的表式,然后从该式出发,不仅能得到空间框架结构弹性动力学的虚功原理,而且通过所给出的广义Legendre变换,还能系统地成对导出空间框架结构弹性动力学的5类变量、3类变量、2类变量变分原理的互补泛函,以及1类变量和相空间非传统Hamilton型变分原理的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for elasto-dynamics of space frame structures were established systematically. The unconventional Hamilton-type vari- ational principle can fully characterize the initial-boundary-value problem of space frame structures' elasto-dy- namics. In this paper,an important integral relation was given,which can be considered as the expression of the generalized principle of virtual work for elasto-dynamics of space frame structures. Based on this relation, it is possible not only to obtain the principle of virtual work for elasto-dynamics of space frame structures, but also to derive systematically the complementary functionals for five-field,three-field and two-field unconventional Hamil- ton-type variational principles, and the functional for one-field and the unconventional Hamilton-type variational principle in phase space by the generalized Legendre transformations given in this paper. Furthermore,with this new approach ,the intrinsic relationship among various principles can be explained clearly.

关 键 词:空间框架结构 弹性动力学 相空间 非传统HAMILTON型变分原理 初值-边值问题 

分 类 号:TU399[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象