A locking-free anisotropic nonconforming rectangular finite element approximation for the planar elasticity problem  被引量:3

A locking-free anisotropic nonconforming rectangular finite element approximation for the planar elasticity problem

在线阅读下载全文

作  者:SHI Dong-yang WANG Cai-xia 

机构地区:[1]Dept. of Math., Zhengzhou Univ., Zhengzhou 450052, China. [2]Faculty of Math. and Inform. Sci., North China Univ. of Water Conservancy and Electric Power,Zhengzhou 450011, China.

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2008年第1期9-18,共10页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Natural Science Foundation of China(10371113,10671184)

摘  要:This paper deals with a new nonconforming anisotropic rectangular finite element approximation for the planar elasticity problem with pure displacement boundary condition. By use of the special properties of this element, and by introducing the complementary space and a series of novel techniques, the optimal error estimates of the energy norm and the L^2-norm are obtained. The restrictions of regularity assumption and quasi-uniform assumption or the inverse assumption on the meshes required in the conventional finite element methods analysis are to be got rid of and the applicable scope of the nonconforming finite elements is extended.This paper deals with a new nonconforming anisotropic rectangular finite element approximation for the planar elasticity problem with pure displacement boundary condition. By use of the special properties of this element, and by introducing the complementary space and a series of novel techniques, the optimal error estimates of the energy norm and the L^2-norm are obtained. The restrictions of regularity assumption and quasi-uniform assumption or the inverse assumption on the meshes required in the conventional finite element methods analysis are to be got rid of and the applicable scope of the nonconforming finite elements is extended.

关 键 词:anisotropic mesh LOCKING-FREE nonconforming finite element optimal error estimate complementary space. 

分 类 号:O29[理学—应用数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象