检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:范秀波[1] 刘天庆[1] 李香琴[1] 刘洋[1] 马学虎[1]
机构地区:[1]大连理工大学大连市干细胞与组织工程研究中心,辽宁大连116024
出 处:《大连理工大学学报》2008年第4期496-502,共7页Journal of Dalian University of Technology
基 金:国家自然科学基金两个基地国际合作资助项目(2002008);辽宁省科学技术基金资助项目(20022140)
摘 要:采用神经网络技术对造血干细胞HSCs体外扩增能力建立了评价及预测模型.总结了前人的实验结果,共获得341组数据.选取细胞接种密度、细胞因子组合、细胞来源、血清、基质细胞、反应器类型和培养时间等7个影响因子作为网络输入特征参数,分别对有核细胞(nuclear cells,NCs)、CD34+细胞和成集落细胞(colony-forming units,CFU-Cs)进行体外扩增能力的拟合评价及预测.选取124、90及86组实验数据分别用于NCs、CFU-Cs和CD34+细胞为评价指标的神经网络训练;而17、10及14组实验数据分别用于NCs、CFU-Cs和CD34+细胞为评价指标的神经网络预测.结果表明,对NCs、CFU-Cs和CD34+细胞的区间训练准确率分别为85.5%、86.7%和86.1%;区间预测准确率分别为82.4%、70.0%和71.4%.由此可知,人工神经网络的非线性模拟使定量描述HSCs体外扩增效果与培养条件间的关系及预测HSCs的最佳体外扩增条件成为可能.An evaluating and predictive model for the ex-vivo expansion of hematopoietic stem cells (HSCs) was built up with artificial neural network (ANN) technology. 341 groups of data were summarized from literatures, in which 124, 90 and 86 data were employed to train the network and 17, 10 and 14 data were applied to predict respectively. Expansion folds of nuclear cells (NCs), colony-forming units (CFU-Cs) and CD34^+ cells were chosen as evaluation objectives and inoculated density, cytokines, cell resources, serum, stromal cells, bioreactor types and culture time were chosen as network inputs. The calculated results show that for the training of network, the interval accuracy of the expansion folds for the different cells is 85. 5%, 86.7% and 86.1% respectively. While for the prediction of network, the interval accuracy can be up to 82.4%, 70.0% and 71.4% respectively. Therefore, this nonlinear modeling makes it possible to quantitatively describe the effects of the culture conditions on the HSCs expansion and to predict the optimal culture conditions for higher ex-vivo expansion of HSCs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112