检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张继福[1] 蒋义勇[1] 胡立华[1] 蔡江辉[1] 张素兰[1]
机构地区:[1]太原科技大学计算机科学与技术学院,太原030024
出 处:《自动化学报》2008年第9期1060-1066,共7页Acta Automatica Sinica
基 金:国家自然科学基金(60773014);山西省自然科学基金(2006011041)资助~~
摘 要:在宇宙中,寻求特殊的、未知的天体是人类探索宇宙奥妙所追求的目标之一,天体光谱离群数据识别方法是实现该目标的有效手段之一.将概念格中每个概念节点内涵描述为天体光谱数据特征子空间,提出了一种天体光谱离群数据识别方法.首先将概念节点的内涵缩减看作天体光谱特征子空间,并依据稀疏度系数阈值确定稀疏子空间;其次对于稀疏子空间,依据稠密度系数判定祖先概念节点内涵是否为稠密子空间,进而判断出概念节点外延中包含的数据对象是否为天体光谱离群数据;最后以离散化天体光谱数据作为形式背景,实验验证了利用该方法识别出的天体光谱离群数据是准确的、完备的和有效的。It is one of the main goals in mankind's universe exploration to find unknown and particular celestial bodies. Outliers recognition is an effective way of finding the spectrum data of unknown and particular celestial bodies in mass celestial body spectrum data. A recognition method of celestial spectra outliers based on concept lattice is proposed by regarding the intension of the concept lattice nodes as characteristic subspace of the celestial spectra. First, the intension reduction of the concept lattice nodes is regarded as the characteristic subspace of celestial spectra, and the sparsity subspace is defined according to the sparsity coefficient threshold. Second, whether the intension of the ancestor nodes for sparsity subspaces is a dense subspace, is decided by the dense coefficient threshold, and accordingly the extent of the node is defined as the celestial spectra outliers if the subspaces are dense. Finally, the experiment results validate the method by taking the celestial spectra as the formal context.
关 键 词:天体光谱 概念格 离群数据 稠密度系数 稀疏子空间
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15