检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《西北大学学报(自然科学版)》2008年第2期243-247,共5页Journal of Northwest University(Natural Science Edition)
基 金:国家自然科学基金资助项目(20476085;20606026);"863"计划基金资助项目(2006AA02Z246)
摘 要:目的将改进BP网络应用于重组类人胶原蛋白工程菌高密度发酵过程分析。方法通过添加动量项和可变学习速度的方法对传统BP网络算法进行改进。结果确定了5-9-1的网络结构,选择15组发酵实验数据对其进行训练。改进的方法对网络的收敛起到明显效果。得到的发酵过程BP网络模型收敛性和预测性能较高,平均相对误差仅2.42%。结论该模型较传统动力学模型误差更小,更接近实验过程。Aim To apply the improved Backpropagation (BP) network in the process of high density fermentation of recombinant escherichia coli producing human-like collagen. Methods The BP network was improved by adding momentum and using variable learning rate. Results 15 Teams of data were used to train the network, whose architecture was 5-9-1. The ways by which the network was improved were clearly working. The average relative error of the BP network model was only 2. 42%, and its astringencies and predictions were nice. Conclusion The model predictions were in better agreement with the experimental data than the kinetic models.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222