检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东建筑大学管理工程学院,山东济南250101 [2]高密建筑工程管理处,山东潍坊261500 [3]山东建筑大学理学院,山东济南250101
出 处:《山东建筑大学学报》2008年第4期355-360,共6页Journal of Shandong Jianzhu University
摘 要:除了线性关系,绿色建筑评估的各级指标与整体性能之间还存在着非线性关系,必须正确反映这些关系以帮助相关组织和个人对绿色建筑的进行甄别。参照《绿色奥运建筑评估体系》设计阶段的指标体系,使用人工神经网络模拟评估人的评估决策,采用评估人给出的40个建筑物评估数据用于训练和仿真。根据指标的逻辑关系采用"级联"方式构建神经网络,分两个阶段进行训练和仿真,降低了小样本对训练效果的不利影响。对那些均方误差已经满足要求的网络,利用确证样本验证其泛化能力。实例显示构建的人工神经网络的学习、泛化能力较强,误判率较低。Besides linear relationship, non-linear relationship is found between the indicators of green building assessment and its function. The paper has tried to correctly figure out these relationships so as to help those invovled to distinguish better buildings. Based on The Assessment System for Green Building of Beijing Olympics, the authors have fabricated an artificial neural network to simulate experts" decision on assessment by assessing 40 buildings to provide samples for training, verifying and simulating. According to the logical structure of indicators, a "cascade" model is introduced in building neural networks which are trained and simulated in two stages, reducing the adverse impact produced by the small sample in training. Verifying samples are used to test generalization of the networks whose MSE achieved the given goal. The simulation results show that the proposed model has a strong ability to learn and generalize information implied in the training sample with less misjudgment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3