检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《河南工程学院学报(自然科学版)》2008年第3期65-67,共3页Journal of Henan University of Engineering:Natural Science Edition
摘 要:介绍了基于向量空间模型(VSM)中的KNN文本分类方法,分析了KNN方法的实质,指出了该方法的不足,对KNN分类中的文档相似性度量公式提出了一种改进方法.改进方法是在文本属性关联和概念共现等基础上提出来的.分类实验结果表明,分类准确率平均提高了约12%.Based on the Vector Space Model (VSM) in the k - Nearest Neighbor (KNN) text classification methods, the essential of KNN in the VSM and its weakness are analyzed. Then we put forward an improved method, which is based on text attribute association and concept co - occurrence. Results of experiments show that the ratio of accuracy is increased by about 12%.
分 类 号:TP391.07[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117