检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白少民[1] 杨志勇[2] 李卫东[1] 薛琳娜[1] 田炜[1]
机构地区:[1]延安大学物理与电子信息学院,陕西延安716000 [2]西安电子科技大学技术物理学院,陕西西安710071
出 处:《延安大学学报(自然科学版)》2008年第3期28-32,共5页Journal of Yan'an University:Natural Science Edition
基 金:陕西省教育厅科研计划项目(07JK427);延安大学专项科研基金(YdK2006-42)
摘 要:利用多模辐射场广义非线性等幂次高次差压缩的一般理论,研究了任意两态叠加多模泛函叠加态光场|ψ(f2)〉q的广义电场分量的非线性等幂次N次方差压缩特性。得到了一般理论结果,讨论了两种特殊两态叠加多模泛函叠加态光场的差压缩特性。结果表明:1)当qN为偶数时,第一类两态叠加多模泛函叠加态光场和虚相干两态叠加多模泛函叠加态光场都不出现广义电场分量的非线性差压缩效应,也不处于N-j最小测不准态;2)当qN为奇数时,在一定条件下,任意两态叠加多模泛函叠加态光场中,广义电场分量呈现出周期性变化的广义非线性N次方差压缩效应。The general theory of generalized nonlinear equal-power higher-power difference-squeezing of muhimode radiation light-field is utilized to study the properties of equal-power N-power difference-squeezing of generalized electric-field component of the arbitrary two-states superposition multimode functional superposition state light-field. The general theory result is obtained, the properties of equal-power N-power difference-squeezing in two special two-states superposition muhimode functional superposition state light-field is discussed. It is shown that:1 )When qN is a even-numbers, not appears as the properties of generalized nonlinear equal-power difference-squeezing of generalized electric-field component and not appears as N-j minimum uncertainty state in first kind two-states superposition multimode functional superposition state light-field and imaginary number coherent two-states superposition muhimode functional superposition state light-field ;2) When qN is a odd-numbers, generalized electric-field component of the arbitrary two-states superposition muhimode functional superposition state light-field can display the effect of generalized nonlinear N-power difference-squeezing which changes periodically and alternatively under a series of fixed conditions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.205