检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴骅[1] 吴耀武[1] 娄素华[1] 王少荣[1] 熊信银[1]
机构地区:[1]华中科技大学电气与电子工程学院,武汉430074
出 处:《高电压技术》2008年第9期1977-1981,共5页High Voltage Engineering
基 金:国家自然科学基金(50677025)~~
摘 要:为了提高电力系统中负荷模型的精确度,提出了一种改进的微分进化算法(IDE)以辨识负荷模型参数。采用不依赖于优化问题的控制参数自适应调整机制,同时考虑搜索速度和搜索精度,使算法摆脱后期易于陷入局部极值点的束缚,克服了微分进化算法参数调整困难的不足,提高了算法的寻优能力。将改进算法应用于静态负荷模型参数辨识的工程实例并与其他算法对比的结果表明,改进DE算法的全局搜索能力强,搜索精度高。Differential evolution(DE) optimization is a computational technique. This paper introduces the DE algorithm, which is quite immune to local optimaztion and is fairly efficient in solving problems with complex hyperspace into the field of electrical load parameter identification. This application involves a suitable neighborhood distribution that assures the better global searching ability of the DE algorithm. The convergent efficiency and searching ability of the DE algorithm, IDE algorithm and PSO algorithm are compared. A conclusion is drawn that the improved differential evolution (IDE) algorithm is more efficient than DE and PSO in load parameter identification. An IDE algorithm is presented to identify parameters of power system load model. Despite its simplicity and high efficiency, the DE algorithm is prone to local optimal solution sometimes, and the parameters of differential evolution algorithm are hard to adopt dynamically. The IDE algorithm adopts adaptive control parameters according to swarms' distribution condition to improve its robust and global optimal searching capability. The proposed IDE algorithm is tested in a real load modeling case. Compared with other algorithms, the identification results show the improved differential evolution algorithm is a successful and feasible approach for load modeling,and the global convergences and convergence precision are better.
关 键 词:改进微分进化算法 负荷建模 参数辨识 自适应 差矢量 交叉 变异
分 类 号:TM714[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.78.139