检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学数学科学学院,广东广州510640
出 处:《华南理工大学学报(自然科学版)》2008年第8期136-139,共4页Journal of South China University of Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(10571062);广东省自然科学基金资助项目(07006552)
摘 要:研究了Camassa-Holm方程和Degasperis-Processi方程广义形式的尖孤立波解.运用微分方程定性理论和动力系统分支方法证明了这一类解的存在性,给出了解的显函数表达式,同时获得了光滑孤立波解的显函数表达式,推广了文献中的某些结果,解决了文献中的一个猜测.This paper investigates the peaked solitary wave solutions to the generalized forms of the Camassa-Holm equation and the Degasperis-Processi equation. By means of the qualitative theory of differential equations and the bifurcation method of dynamic systems, the existence of the peaked solitary wave solutions is proved, and the ex- plicit expressions of the peaked and the smooth solitary wave solutions are respectively given. Moreover, some resuits in the literature are extended and a conjecture is clarified.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200