检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈守煜[1]
机构地区:[1]大连理工大学土木水利学院,辽宁大连116024
出 处:《数学的实践与认识》2008年第18期146-153,共8页Mathematics in Practice and Theory
基 金:国家自然科学基金(50779005);水利部科技创新项目(SCXC2005-01)
摘 要:在对立模糊集定义基础上给出以相对隶属函数表示的模糊可变集合定义,给出可变模糊聚类迭代模型、可变模糊模式识别模型、可变模糊对立识别模型.它们是可变模糊聚类、识别、优选决策、评价相统一的理论模型集,是可变模糊集的基础模型与核心内容,可用于自然、管理、人文、社会等各种学科中关于模糊聚类、识别、优选决策、评价、预测等众多实际领域.Based on definition of opposite fuzzy sets, the definition of fuzzy variable sets which is expressed by relative membership function and the model of variable fuzzy clustering iteration, variable fuzzy pattern recognition, and variable fuzzy opposite recognition are given in this paper. These are unified model sets for variable fuzzy clustering, recognition, optimum decision making and assessment. More importantly, these are base and core to the theory of variable fuzzy sets. They could be applied to actual problems in all kinds of subject, such as nature, management, humanity and society, etc., including fuzzy clustering, recognition, optimum decision making, assessment and forecasting, etc.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229