检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏建政[1]
出 处:《钻采工艺》2008年第5期90-92,102,共4页Drilling & Production Technology
摘 要:通过分析压裂气井稳定产能与其影响因素之间的相关性,应用目前流行的BP人工神经网络方法,建立了压后气井稳态产能预测模型,并且在Matlab软件平台上对网络模型实现。根据现场收集的近30口气井的压裂施工数据和压后产能数据,对网络进行训练,并将训练好的网络用于同区块的压裂井稳定产能预测分析。结果表明,与常规方法相比,该方法不需要复杂数值模拟计算,预测精度可以指导现场生产,为气田在区块开发过程中压裂气井稳定产能评价提供了一种分析方法。This paper analyzed the interdependency with the constant rate of fracturing gas well and its influence factors,estab-lished the prediction model of constant rate based on the BP neural network and realized this model using Matlab software platform.Based on collecting the construction data and deliverability data of nearly 30 wells,the neural network was trained,and after being trained,the network was used to predict the constant rate of frac-turing gas well in the same block.The results showed that the method didn' t need complex numerical simulation computation compared with other conventional methods,and its computation re-sult is practicable to predict the constant rate of fracturing gas well.
分 类 号:TE377[石油与天然气工程—油气田开发工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145