检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Fengqing Li Bihe Hou Lei Chen Zhujun Yao Guofan Hong
机构地区:[1]State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China [2]State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
出 处:《Acta Biochimica et Biophysica Sinica》2008年第9期783-789,共7页生物化学与生物物理学报(英文版)
摘 要:At initial stages in the Rhizobium legume symbiosis, most nodulation genes are controlled by NodD protein and plant inducers. Some genetic studies and other reports have suggested that NodD may be activated by its direct interaction with plant inducers. However, there has been no molecular evidence of such an inducing interaction. In this paper, we used fluorescence resonance energy transfer technique to see whether such an interaction exists between NodD and its activator, naringenin, in vitro. The tetracysteine motif (Cys-Cys-Pro-Gly-Cys-Cys) was genetically inserted into NodD to label NodD with 4′,5′-bis(1,3,2-dithioarsolan-2-yl) fluorescein (FlAsH). Naringenin was labeled with fluorescein by chemical linking. In the fluorescence resonance energy transfer experiments in vitro, the fluorescence intensity of one acceptor, NodD(90R6)-FIAsH, increased by 13 %. This suggests that NodD may directly interact with inducer naringenin in vitro and that the reaction centre is likely near hinge region 1 of NodD.At initial stages in the Rhizobium legume symbiosis, most nodulation genes are controlled by NodD protein and plant inducers. Some genetic studies and other reports have suggested that NodD may be activated by its direct interaction with plant inducers. However, there has been no molecular evidence of such an inducing interaction. In this paper, we used fluorescence resonance energy transfer technique to see whether such an interaction exists between NodD and its activator, naringenin, in vitro. The tetracysteine motif (Cys-Cys-Pro-Gly-Cys-Cys) was genetically inserted into NodD to label NodD with 4′,5′-bis(1,3,2-dithioarsolan-2-yl) fluorescein (FlAsH). Naringenin was labeled with fluorescein by chemical linking. In the fluorescence resonance energy transfer experiments in vitro, the fluorescence intensity of one acceptor, NodD(90R6)-FIAsH, increased by 13 %. This suggests that NodD may directly interact with inducer naringenin in vitro and that the reaction centre is likely near hinge region 1 of NodD.
关 键 词:NODD NARINGENIN fluorescence resonance energy transfer (FRET)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117