检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁勋国[1] 贾涛[1] 矫志杰[1] 王国栋[1] 刘相华[1]
机构地区:[1]东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110004
出 处:《钢铁研究学报》2008年第10期59-62,共4页Journal of Iron and Steel Research
基 金:国家自然科学基金资助项目(50504007)
摘 要:采用了一种基于贝叶斯方法的前向神经网络训练算法以提高网络的泛化能力,并在网络的目标函数中引入了表示网络结构复杂性的惩罚项,避免了网络的过拟合。采用Levenberg-Marquardt算法训练网络,并使用Gauss-Newton的数值方法来近似求解Hessian矩阵,以减少计算量,从而提高了网络的收敛速度。将上述网络应用于冷轧过程的轧制力预报中,预报结果的精度远远高于解析模型,与基于传统BP神经网络的冷轧轧制力预报模型相比,在收敛的速度和预报的精度上均优于后者。Bayesian regularization was applied to the training of feedforward neural networks in order to improve their generalization capabilities. A penalty item which represents the network complexity was introduced into the performance function to avoid "overfitting". A Gauss-Newton numerical method was used to solve the Hessian matrix approximately, which was implemented within the framework of the Levenberg-Marquardt algorithm to reduce the complexity of the calculation, and a fast convergence rate of the network was achieved. The network was applied to rolling force prediction in cold rolling process, exhibiting higher precision than the physical models. Compared with the prediction model based on traditional back-propagation neural network, the Bayesian network has a faster convergence rate and better precision.
分 类 号:TG335.12[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117