基于Gabor小波和模型自适应的鲁棒人脸识别方法  

Robust face recognition by Gabor features and model adaptation

在线阅读下载全文

作  者:林劼[1] 李建平[1] 

机构地区:[1]电子科技大学计算机科学与工程学院,成都610054

出  处:《计算机应用研究》2008年第9期2868-2871,共4页Application Research of Computers

基  金:国家自然科学基金资助项目(10471151)

摘  要:提出了一种基于Gabor小波人脸特征和模型自适应算法的新鲁棒人脸识别方法。该方法在真实识别前,通过用与真实识别相同的环境条件下所获得的人脸图像数据对原始模型进行更新补偿,实现了模型自适应。该模型自适应更新算法是加性的,其具有较低的时间和空间复杂度。通过模型自适应更新,新方法可以有效地减少模型和识别数据间的失配,从而提高识别率。在AT&T和MIT-CBCL人脸数据库上的测试结果表明,该方法是有效的。This paper proposed a robust face recognition algorithm based on Gabor wavelet representations and model adaptation. The models used in this work were from linear associative memory method and fast compensated by adaptively learning from the given facial data, which were obtained in same condition as testing. The proposed adaptation algorithm is incremental. It has low time and space complexity. By compensating models, this method can efficiently reduce the mismatch between models and testing data, substantially improving the performance of classifier. The new recognition method was tested using two widely used face datasets:AT&T and MIT-CBCL face database. Results indicate that the algorithm is effective. And due to the computational simplicity, the algorithm is also efficient.

关 键 词:模型补偿 人脸识别 模型自适应 GABOR 联想记忆模型 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象