检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学通信与控制工程学院,江苏无锡214122
出 处:《传感器与微系统》2008年第10期33-35,38,共4页Transducer and Microsystem Technologies
基 金:国家"863"计划资助项目(2006AA10A301;2006AA10Z335)
摘 要:针对电子电路的故障诊断问题,提出一种基于Bayes决策理论的多传感器数据融合解决方法。通过测试电路中被诊断元件温度和节点电压2个物理量,得出Bayes理论中不同传感器对各待诊元件的先验概率,在此基础上,利用Bayes条件概率公式进行两级数据融合,得到各元件关于故障类型的目标概率值,进而根据最大概率值确定故障元件。Bayes多传感器数据融合诊断与单传感器诊断方式相比,大大提高了故障识别准确率,并降低了故障元件不确定的概率。实验结果证明:该方案是一种有效的电路故障诊断方法。A data fusion method for circuit fault diagnosis is presented based on Bayes decision theory. By measuring the temperature and voltage of circuit components, the prior probabilities and conditional probabilities of different sensors to every circuit component are obtained. The target probability values of fault types and attributes for the components are calculated via two-level data fusion with Bayes conditioned probability formula, thus the fault component is found according to maximum probability value. Comparing the diagnosis results based on separate sensor to multi-sensor, it is shown that the later not only improves the accurate rate of fault recognition but reduces the probability of uncertainty. Tests indicate that this method is effective for circuit fault diagnosis.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3