一种基于LS-SVR的电网在线暂态稳定性预测新方法  被引量:5

A new method of transient stability forecasting based on LS-SVR

在线阅读下载全文

作  者:白茂金[1] 陈刚[1] 刘青[2] 张作鹏 张雪君[1] 

机构地区:[1]重庆大学高电压与电工新技术教育部重点实验室,重庆400044 [2]西安科技大学电控学院,陕西西安710054 [3]重庆电力超高压局,重庆400030

出  处:《电力系统保护与控制》2008年第19期9-14,共6页Power System Protection and Control

基  金:重庆市科委自然科学基金资助项目(2006BB6209)~~

摘  要:广域测量系统WAMS(Wide Area Measure System)的出现,为大电网在线暂稳预测提供了新的实时数据平台。基于WAMS数据,通过CCCOI-RM变换将系统进行简化等值,采用最小二乘支持向量机回归算法LS-SVR(Least Square Support Vector Regression)的出色学习性能和非线性处理能力,对等值系统的功角轨迹进行在线学习和实时预测,并进一步使用极值、阈值双重判据进行暂态稳定性判断。该方法不用考虑系统详细结构,计算速度快,预测时间长,仿真分析表明所提出的方法能够快速准确地预测电力系统的暂态稳定性,并为下一步采取相应的紧急预控制措施提供相对充裕的时间窗口。Wide Area Measure System provides a new platform for on-line transient stability prediction of bulk power system. A novel time series data based Least Square Support Regression (LS-SVR) transient stability forecasting method is proposed to solve the on-line transient stability problems in the paper. The LS-SVR method has excellent studying and non-linear problems processing abilities, and can provide a comparatively long forecasting time range. Calculation is simplified by CCCOI-RM transform and results stability is enhanced by using of Extremum plus Threshold Double Criterion in the paper. The method is fast and has no direct collection with the system detailed model. Simulation results show that the proposed method yield satisfactory accuracy for real-time transient stability prediction. This project is supported by National Natural Science Foundation of Chongqing Science & Technology Commission (No.2006BB6209)

关 键 词:广域测量系统(WAMS) 相量测量单元(PMU) 最小二乘支持向量机回归(LS—SVR) 暂态稳定 功角预测 

分 类 号:TM712[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象