检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学北京土地复垦与生态重建研究所,北京100083 [2]核工业北京化工冶金研究院,北京101149
出 处:《农业工程学报》2008年第10期15-19,共5页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家高技术研究发展计划(863)项目(2006AA06Z355);教育部新世纪优秀人才计划(NCET-04-0484);教育部科学技术研究重点项目(107126)
摘 要:为能较容易且更准确地获取复垦土壤水分特征曲线,将易测定的土壤特性如土壤质地、容重和饱和含水量作为输入变量,采用基于bagging算法的神经网络法建立了用于预测土壤水分特征曲线的土壤转换函数法(PTFs)模型,并对徐州矿区复垦土壤的水分特征曲线进行了预测,同时与普通BP算法预测精度进行了比较。研究结果表明所建立的PTFs参数模型具有较高的估计精度,bagging算法均方根预测误差比普通BP算法减少了7.5%~27.0%,说明该模型的建立与求解为复垦土壤水分特征曲线的预测研究提供了一条新途径。With the dataset of reclaimed soils in Xuzhou mine area of China, neural networks coupled with bootstrap aggregation were developed to predict the soil water retention curves from routinely and easily determined soil properties such as texture, bulk density and saturated water content. Results indicated good agreement between observed and predicted values. The root mean squared of residuals for predicted values of water content were reduced by 7.5%- 27.0% when compared with predicted values using back-propagation algorithm. Use of the developed neural network models is attractive because of improved accuracy and because it permits a considerable degree of flexibility toward available input data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222