检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭广泉[1]
出 处:《安徽大学学报(自然科学版)》2008年第5期5-7,共3页Journal of Anhui University(Natural Science Edition)
摘 要:令G是一个群,A是一个环,C是群分次A-余环.定义了群分次Frobenius余环,这个概念是Frobenius余环概念的推广.给出群分次余环是群分次Frobenius余环的充分与必要条件,证明了群分次Frobenius余环是群分次环,并且A→Ce是Frobenius扩张.Let G was a group, A a ring, Ca group graded A - coring. The notion of group graded Frobenius corings was defined, which generalised the notion of Frobenius coring. We found the necessary and sufficient conditions for a group graded coring was a group graded Frobenius coring. We proved that a group graded Frobenius corings was a ring, and A→Ce was Frobenius extension.
关 键 词:Frobenius余环 群余环 群分次Frobenius余环
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.93.159