有顾客时间窗和发货量变化的车辆调度干扰管理研究  被引量:17

Study on Disruption Management of Vehicle Routing Problem with the Changes of Time Windows and Delivery Weight of Customers

在线阅读下载全文

作  者:王旭坪[1] 许传磊[1] 胡祥培[1] 

机构地区:[1]大连理工大学系统工程研究所,辽宁大连116023

出  处:《管理科学》2008年第5期111-120,共10页Journal of Management Science

基  金:国家自然科学基金(70671014;70571009);国家杰出青年基金(70725004)

摘  要:为解决由顾客需求变化引发的物流配送干扰问题,提出基于干扰管理思想构建扰动恢复策略和方案。应用虚拟多车场实现车辆调度扰动恢复问题转化,提出车辆调度扰动恢复策略和扰动度量方法,以作为车辆调度干扰管理建模的基础;分析顾客时间窗和发货量变化造成的扰动并进行辨识,建立相应的干扰管理模型,提出归一化处理办法对VRPTW、MD-VRPTW和MDVRPTW干扰管理问题进行有效兼容;结合干扰管理模型的特点,改进基于顾客的编码表示方法,可以反映出车辆调度扰动恢复策略;根据干扰管理思想,设计遗传算法对干扰管理模型进行求解。给出了一个具有代表性的算例试验结果,算例结果及其分析表明干扰管理模型和遗传算法的有效性。To tackle the disruption that is caused by the demands of customers in the logistics, the paper proposes disruption recovery strategies and solutions based on the theory of disruption management. The trans-formation method for the disruption recovery of the vehicle routing problem is put foward on the basis of the multiple depots, and the disruption recovery strategies and the methods of deviation measurement are given, which is the foundation of the disruption management modeling for the vehicle routing problem. After the disruption is illustrated and distinguished by analyzing and identifying the changes of time windows and delivery weight of customers, the disruption management model is constructed, and the normalization method for the model is given, making the model compatible with VRPTW, MDVRPTW and disruption management for MDVRPTW. On the basis of the characteristic of the model, the chromosome code based on customer is ameliorated, which can indicate the disruption recovery strategies; according to the disruption management, the genetic algorithm is designed to solve the model. The representative result and analysis are provided in this paper, and the experiment indicates the validity of the model and algorithm.

关 键 词:干扰管理 扰动恢复 车辆路径问题 时间窗 容量 遗传算法 

分 类 号:C93[经济管理—管理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象