检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王靖琰[1]
机构地区:[1]中国科学院上海应用物理研究所,上海201800
出 处:《现代电子技术》2008年第22期161-163,166,共4页Modern Electronics Technique
摘 要:小波包分析能够为信号提供一种更加精细的分析方法,它将频带进行多层次划分,对多分辨分析没有细分的高频部分进一步分解,并能够根据被分析信号的特征,自适应地选择相应频带,使之与信号频谱相匹配,从而提高时-频分辨率。为了能在DSP嵌入式设备中应用小波包分析方法进行信号处理,首先讨论小波包分解的过程和最优基及代价函数的选择方法,然后提出一种在DSP上实现香农熵代价函数的小波包分解算法的方法,并在浮点型DSP TMS320C6713B上实现了此算法。最后针对具体的数字信号进行小波包分解和最优基选择的实验,实验结果证明了该方法的正确性和高效性。Wavelet packet analysis is a precies analytical method by which the frequency band is further divided into multiple layers and the high frequency is divided in a more deep--going way. On the basis of characters of the signal,it can select the frequency band so that it can match the signal frequency properly and improve the time frequency resolution. In order to apply wavelet packet analysis in signal processing on DSP embedded equipment, the process of wavelet packet decomposition and the method for choosing the best base and cost function are discussed. Wavelet packet decomposition whose cost function is Shannon entropy is then implemented on floating point DSP TMS320C6713B. Experiment of wavelet packet decomposition and best base choosing is made. Effectiveness of this method is verified by results of the experiment.
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28