检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京大学遥感与地理信息系统研究所,北京100871
出 处:《北京大学学报(自然科学版)》2008年第6期921-926,共6页Acta Scientiarum Naturalium Universitatis Pekinensis
基 金:国家自然科学基金(40401036);国家"863"计划(2005AA133011XZ07)资助项目
摘 要:将基于独立成分分析(independent component analysis,ICA)技术的盲分解方法(blind signal separation,BSS)应用于遥感混合像元的定量分解,解决了幅度不确定性问题,实现了从高光谱数据中同时得到定量的组分光谱信息和组分权重信息。通过数值模拟实验提出了光谱反演区间的选择方法,进一步完善了该算法,且讨论了算法的稳健性。以陕西省横山县为试验区,从HYPERION高光谱影像中反演了各像元的植被覆盖度,并利用SPOT5影像进行了精度验证,结果表明该方法具有较高的精度。Blind signal separation (BSS) based on the technique of independent component analysis (ICA) was introduced to the quantitative remote sensing field for mixed pixel unmixing. The scale invariant problem of the classical method was solved and the spectral and weight information of components was synchronously gained from hyperspectral data. The algorithm was further improved in the computer numerical simulation experiments, where the method for choosing best spectral coverage for retrieval was presented. Its robustness was also discussed. It was finally applied on the HYPERION hyperspeetral image of the study area in Hengshan county, Shanxi Province, for retrieving the vegetation cover in pixels. The accuracy validation by using SPOT5 image shows the high accuracy of this algorithm.
关 键 词:混合像元 独立成分分析(ICA) 高光谱 盲分解
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117