检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:XU JingBo ZHANG HaiYing WANG WenXin LIU Liang LI Ming FU XiaoJun NIU JieBin YE TianChun
机构地区:[1]Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China [2]Institute of Physics, Chinese Academy of Science, Beijing 100080, China
出 处:《Chinese Science Bulletin》2008年第22期3585-3589,共5页
基 金:the National Basic Research Program of China (Grant No. G2002CB311901);Equipment Advance Research Project (Grant No. 61501050401C);Institute of Microelectronics, Chinese Academy of Sciences, Dean Fund (Grant No. 06SB124004)
摘 要:GaAs-based metamorphic HEMTs (MHEMT) consist of GaAs substrates and InP-based epitaxial structure, and have the advantages of both InP HEMT's excellent performances and GaAs-based HEMT's mature processes. GaAs-based MHEMTs were applied to millimeter-wave low-noise, high-power applications and systems. The current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) are important performance parameter of GaAs-based MHEMTs, and they are limited by the gate-length mainly. Electron beam lithography is one of the lithography technologies which can be used to realize the deep submicron gate-length. The 200 nm gate-length GaAs-based MHEMTs have been fabricated by electron beam lithography. In order to reduce the parasite gate capacitance and gate resistance, a trilayer resist structure was used to pattern the T-gate resist profile. Excellent DC, high frequency and power performances have been obtained. FT and fmax are 105 GHz, 70 GHz respectively. The research is very helpful to obtain higher performance GaAs-based MHEMTs.GaAs-based metamorphic HEMTs (MHEMT) consist of GaAs substrates and InP-based epitaxial structure, and have the advantages of both InP HEMT's excellent performances and GaAs-based HEMT's mature processes. GaAs-based MHEMTs were applied to millimeter-wave low-noise, high-power applications and systems. The current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) are important performance parameter of GaAs-based MHEMTs, and they are limited by the gate-length mainly. Electron beam lithography is one of the lithography technologies which can be used to realize the deep submicron gate-length. The 200 nm gate-length GaAs-based MHEMTs have been fabricated by electron beam lithography. In order to reduce the parasite gate capacitance and gate resistance, a trilayer resist structure was used to pattern the T-gate resist profile. Excellent DC, high frequency and power performances have been obtained. FT and frnax are 105 GHz, 70 GHz respectively. The research is very helpful to obtain higher performance GaAs-based MHEMTso
分 类 号:TM0[电气工程—电工理论与新技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43