检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学信息科学与技术学院,四川成都610031 [2]西南交通大学峨眉校区,四川峨眉614202
出 处:《通信技术》2008年第11期188-190,共3页Communications Technology
摘 要:信号稀疏分解广泛应用于图像和信号处理领域,特别是在数据压缩和数据存储、特征提取领域应用广泛。但信号稀疏分解本身是典型的NP困难问题,要成功的进行信号稀疏分解是十分困难的。文中利用模拟退火算法来快速寻找Matching Pursuit(MP)过程每一步的最优原子,提出了一种基于模拟退火的信号稀疏分解算法。仿真结果表明该算法能有效和快速地进行信号稀疏分解。Sparse decomposition of signal is extensively applied to image and signal processing fields, especially to data compressing, data storing, and feature extracting. However, sparse decomposition of the signal is a NP difficult problem. It is very difficult to make successful sparse decomposition of the signal. In this paper, the simulated annealing algorithm is used to find quickly the optimal atom in the process of Matching Pursuit (MP), and then an algorithm of sparse decomposition of the signal based on simulated annealing is proposed. Simulation results show that this algorithm can effectively and quickly make sparse decomposition of the signal.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30