检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学应用力学与工程系,成都610031 [2]西南交通大学数学系,成都610031
出 处:《科学技术与工程》2008年第23期6236-6239,共4页Science Technology and Engineering
摘 要:为了提高标准微粒群算法处理复杂函数时的优化性能,引入了一种扩展形式的新微粒群算法。该算法充分利用了微粒群算法中两个量的优点:群体最优位置利于引导个体快速进化、个体最优位置的中心利于增强群体的多样性。新算法是标准微粒群算法的扩展形式,同时保持了迭代公式的简洁形式。通过复杂函数优化的数值模拟表明,扩展的微粒群算法较标准微粒群算法在寻优能力上有明显的提高。In ordor to improve the performance of the standard particle swarm optimization algorithm (PSO) optimizing the complicated functions, a new extended particle swarm optimization algorithm (EPSO) was advanced. EPSO took full advantage of two variables in PSO, the global best place (pg) availing guiding individual evolution quickly, and the center of all individual best places (pmean) availing increasing the colonial diversity. The new algorithm was the extension of PSO, at the same time the concise iterative formulation was kept. The simulations of complicated functions optimizatuon show that the EPSO has better ability to find the global optimum solution than the standard particle swarm optimization algorithm.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185