检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州理工大学计算机与通信学院,兰州730050
出 处:《计算机应用》2008年第12期3227-3230,共4页journal of Computer Applications
基 金:甘肃省教育厅科研基金项目资助(0703-07)
摘 要:针对模糊支持向量机在文本分类应用中的隶属度函数确定问题,提出了一种基于模糊支持向量机与决策树的文本分类器的构建方法。该方法不仅考虑了样本与类中心之间的关系,还根据传统支持向量机中包含支持向量且平行于分类面的平面构建切球,来确定类中各个样本之间的关系,由样本点与球的位置关系计算其隶属度,可以合理地区分有效样本和噪音、孤立点样本。并与决策树方法相结合,实现多类分类。实验结果表明,该方法具有良好的分类效果。For determining the membership function in text classification with fuzzy support vector machine, a construction approach of text classifier based on fuzzy support vector machine and decision tree was proposed. The relationship between the sample and its cluster center was considered and the tangent sphere was constructed by the hyperplane that contained the support vectors and paralleled the classification hyperplane in traditional support vector machine, so to further determine the relation of all samples in the class. The membership of one sample to a class could be computed by the location of the sample in the sphere, so the efficient samples, noises and outliers could be distinguished rationally. Integrating the decision tree method, the classification of multi-classes was realized. The experimental results demonstrate the method has preferable classification effect.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.94.64