检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学自动化系,安徽合肥230027
出 处:《控制工程》2008年第6期665-668,共4页Control Engineering of China
摘 要:针对经典BP网络训练速度慢、易陷入局部最小值而无法收敛的弱点,提出用具有高度柔性的柔性神经网络代替经典网络,并以矩阵作为基本运算单位导出了柔性神经网络训练的最速下降法和LM(Levenberg Marquard)算法。矩阵作为基本运算单位的优点是可以用高效矩阵库LAPACK来编写程序,提高了数值计算的精度和速度。仿真结果表明了算法的有效性。To the problem that flexible neural networks is a kind of network structure with high flexibility, but the training algorithms is not so rich compared with classic neural networks, using matrix as the basic arithmetic unit, the steepest descent algorithm and LM optimization algorithm are deduced. With matrix being used as the basic arithmetic unit, highly efficient LAPACK can be applied to deal with programming, which shall increase the accuracy and speed of numerical computation. Finally, a simulation example shows the validity of the algorithm, and indicates that flexible neural network, to a certain degree, overcomes the disadvantages of classic BP network training.
分 类 号:TP27[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124