基于最小二乘支持向量机和自适应模拟退火算法的电磁场逆问题全局优化方法  被引量:3

A Global Optimization Algorithm Based on Least Squares Support Vector Machines and Adaptive Simulated Annealing Algorithm for Inverse Electromagnetic Problem

在线阅读下载全文

作  者:杨庆新[1] 安金龙[2] 马振平[2] 侯立坤[2] 陈堂功[2] 陈海燕[2] 

机构地区:[1]天津工业大学计算机技术与自动化学院,天津300160 [2]河北工业大学电磁场与电器可靠性省部共建重点实验室,天津300130

出  处:《电工技术学报》2008年第11期1-7,共7页Transactions of China Electrotechnical Society

基  金:国家自然科学基金(50577014);河北省科技厅(052135143)资助项目

摘  要:分析了目前电磁场逆问题全局优化算法存在的收敛速度慢以及搜索时间长等问题的主要原因,并针对以上问题提出了基于最小二乘支持向量机和自适应模拟退火电磁场逆问题优化新算法,充分利用了自适应模拟退火算法中丢失的已搜索过点的信息,动态地建立和改进待求问题的数值模型,指导最优解的搜索过程,大大减少了求解电磁场正问题的求解次数,缩短了搜索到最优解的时间,通过仿真实验以及实际应用的对比,效果显著,提高了电磁场优化设计的实际应用能力。Main reasons for lower convergence speed and longer time consumption problems existed in the global optimization algorithm of the inverse electromagnetic problem are analyzed. In order to solve these problems, a new global optimization algorithm for the inverse electromagnetic problem is presented and it is based on the least squares Support Vector Machines (SVM) and the adaptive simulated annealing. In searching process of the adaptive simulated annealing algorithm, the solution information searched is fully taken to construct dynamically and improve the approximation mathematical model of optimization problem being solved by SVM. The model can be used in the searching process of adaptive simulated annealing algorithm to decrease the times of solving forward electromagnetic problem. And finally the time of solving inverse electromagnetic problem is greatly decreased. The comparison for the computational results shows that the new algorithm presented has better effect and the ability for practical application of electromagnetic optimization is enhanced greatly.

关 键 词:最小二乘支持向量机 自适应模拟退火算法 电磁场逆问题 全局优化 

分 类 号:TM154.4[电气工程—电工理论与新技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象