检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁师范大学数学学院
出 处:《吉首大学学报(自然科学版)》2008年第6期21-24,共4页Journal of Jishou University(Natural Sciences Edition)
摘 要:在非光滑优化中,函数的二阶性质与展开的理论与应用方面的研究是倍受关注的课题.2000年Lemaréchal,Mifflin,Sagastizábal和Oustry等提出的UV-分解理论,给出了非光滑凸函数f在不可微点的二阶性质的新方法.UV-分解理论的基本思想是将Rn分解为2个正交的子空间U和V的直和,使得原函数在U空间上的一阶逼近是线性的,其不光滑特征集中于V空间中,借助于中间函数(U-Lagrange函数),得到函数在切于U空间的某个光滑轨道上的二阶展式.文中主要是将UV-分解理论推广到一类具有锥约束的非凸函数.使用罚函数的方法,讨论了该罚函数的UV-空间分解结构,并得到该罚函数在光滑轨道上的一阶、二阶性质及其展开式.In nonsmooth optimization, the study concerning the theory and application of second-order analysis of nonsmooth function has drawn much attention. Lemaréchal, Mifflin, Sagastizabal and Oustry (2000) introduced the UV-decomposition theory,which opens a way to define a suitable restricted second-order derivative of a convex function f at nondifferentiable point x. The basic idea is to decompose Rn into two orthogonal subspaces U and V depending on x, so that the first approximation off in U is linear, and f's nonsmoothness near the point is coneen-trated essentially in V, and obtain second-order expansions. This paper mainly applies the UV-decomposition theory to a series of nonconvex function. Using the method of penalty function, the paper discusses the definition of the UV-decomposition of the penalty function, and the first-order and second-order expansions of the penalty function.
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.95.53