检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:范高锋[1] 王伟胜[1] 刘纯[1] 戴慧珠[1]
机构地区:[1]中国电力科学研究院,北京市海淀区100192
出 处:《中国电机工程学报》2008年第34期118-123,共6页Proceedings of the CSEE
摘 要:风电场输出功率预测对接入大量风电的电力系统运行有重要意义。对风速和风电场输出功率预测的方法进行了分类。根据风电场输出功率的影响因素,建立了风电功率预测的神经网络模型。分析了实测功率数据、不同高度的大气数据对预测结果的影响。建立了基于神经网络的误差带预测模型,实现了误差带预测。研究结果表明,神经网络的结构和输入样本对预测结果有一定的影响;实测功率数据作为输入可以提高提前量为30min的预测精度,而对提前量为1h的预测精度会降低;把不同高度的数据都作为神经网络的输入比只采用轮毂高度数据的预测精度高;设计的神经网络能够对误差带进行预测。Wind power prediction is important to the operation of power system with comparatively large mount of wind power. The wind power prediction methods were classified into several kinds. An artificial neural network (ANN) model for wind power prediction was constructed according to the wind power influence factors. Then the impacts of real time measured power and the atmospheric data at different heights on prediction results were analyzed. Besides, another ANN model for error band prediction was also built. The results indicate that the ANN structure and the training sample have some impact on the prediction precision. The real time measured power as input will improve the precision of 30 min ahead prediction, however will decrease the precision of lh ahead prediction. The results which using the atmospheric data at all different heights as input have a higher accuracy when compared with the results using hub height data only. The designed ANN can forecast the error band.
分 类 号:TM743[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117