SVM方法在降水预报中的应用及改进  被引量:10

Application and Improvement of SVM Method in Precipitation Forecast

在线阅读下载全文

作  者:熊秋芬[1] 曾晓青[2] 

机构地区:[1]中国气象局培训中心,北京100081 [2]兰州大学大气科学学院

出  处:《气象》2008年第12期90-95,共6页Meteorological Monthly

基  金:"中国气象局数值模式创新基地"开放课题(2007)

摘  要:以T213数值模式输出产品为基础,结合常规观测的降水资料,利用SVM方法,进行了大量多因子的随机交叉验证,从而选出最优参数,建立了全国72个站点的降水预报模型,并用独立的样本对预报模型进行了检验。再通过计算正、负样本的贴近度来分析预报因子,实现了预报因子的筛选和降水预报模型的改进;检验结果表明:改进后的降水模型的预报结果优于改进前的。实时业务试运行的结果也显示SVM模型的降水预报效果好于T213模式直接输出的降水预报。Based on T213 NWP (Numerical Weather Prediction)model outputs and precipitation observations, cross-validation is performed with random samples to find the samples with best predictors and optimal parameters. The forecast models of precipitation are established at 72 meteorological stations in China by the SVM (Support Vector Machine) statistical method. The models are verified with independent samples. The predictors are selected and the precipitation forecast models are improved by pressing close degree. Forecast experiments show that the improved models are better. The precipitation forecasted by SVM models is superior to the precipitation of T213 DMO (direct model output) in real - time experiments.

关 键 词:SVM方法 降水预报 贴近度 因子 

分 类 号:P457.6[天文地球—大气科学及气象学] TM464[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象