检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贺可鑫[1] 何小海[1] 陶青川[1] 王宇[1]
出 处:《计算机应用》2009年第1期78-80,85,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(60372079);教育部科学技术研究重点项目(107094)
摘 要:在计算光学切片显微技术成像中,每幅切片图像都要受到其他离焦层信息的干扰,引起图像模糊。针对此问题提出了一种基于RBF神经网络的复原算法,利用神经网络的学习和泛化能力,用一组样本图像对网络进行训练,建立含有离焦模糊信息的模糊三维图像与其对应清晰图像间的非线性映射关系,然后用训练好的网络进行图像复原。实验证明该算法的复原速度快,且复原的三维图像在主观视觉和定量分析上都获得了较好的效果。In the process of obtaining 3D images by Computational Optical Sectioning Microscopy method ( COSM), every slice image is disturbed by other defocusing messages and the 3D images are blurred. In order to resolve this problem, a new restoration method based on the RBF neural network was proposed. The nonlinear mapping relationships between the 3D blurred images with defocusing messages and 3D clear images were established by training the Radial Basis Function (RBF) neural network that has the ability of learning and generalizing with a group of COSM images. Then 3D images that need restoring could be restored by the trained neural network. Experiment demonstrates that the speed of this method is high and this method has satisfying restoration performance in both visual impression and quantitative analysis.
关 键 词:图像复原 神经网络 计算光学切片显微技术 非线性映射
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28