一种变尺度UV-的分解算法  

A modified UV-decomposition algorithm

在线阅读下载全文

作  者:王炜[1] 王宝全[1] 

机构地区:[1]辽宁师范大学数学学院,辽宁大连116029

出  处:《辽宁师范大学学报(自然科学版)》2008年第4期385-389,共5页Journal of Liaoning Normal University:Natural Science Edition

基  金:辽宁省教育厅科学技术研究项目(2008376)

摘  要:C.Lemarechal等提出的UV-分解算法理论,是在UV-空间分解理论的基础上利用Moreau-Yosida正则化定义了迫近点函数的一种算法,用以解决一般凸函数的最优化问题.基于上述算法理论,通过新的Moreau-Yosida正则化来定义变尺度迫近点函数,并使用拟牛顿法中的SR1校正公式对新的迫近点函数中的矩阵进行校正,使算法中的函数在bundle子程序中有更稳定的下降量.The UV-decomposition algorithm given by C. Lemarechal and et al. , is an algorithm to define the proximal point function,based on Moreau-Yosida regularization. The algorithm is used to solve the optimization problem of general convex functions. In this paper, we introduce a modified UV-algorithm based on the above theory. The method uses a new Moreau-Yosida regularization to define the variable metric proximal function, and uses the SR1 formula of quasi-Newton method to update the matrix of new proximal point function. Then the function in bundle subroutine decreases stably.

关 键 词:非光滑最优化 UV-分解算法 Moreau-Yosida正则化 快速轨道 

分 类 号:O224[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象