基于遗忘进化规划的Hopfield网学习算法  被引量:6

A Learning Algorithm of Hopfield Neural Network Based on Evolutionary Programming with Forgetting

在线阅读下载全文

作  者:孟祥武[1,2] 程虎[1,2] 

机构地区:[1]北京邮电大学计算机工程系 [2]中国科学院软件研究所

出  处:《软件学报》1998年第2期151-155,共5页Journal of Software

摘  要:本文提出了一个基于遗忘进化规划的Hopfield网学习算法.通过遗忘部分个体,算法能避免局部最小.给定不动点、极限环或迭代序列,通过解不等式,算法能同时获得Hopfield网的拓扑结构和权值.该算法克服了进化Hopfield网学习的局限性.它还能找到多个优化解.实验也证明了该算法的有效性.This paper presents a learning algorithm of Hopfield neural network based on evolutionary programming with forgetting. The algorithm can avoid local minima by forgetting some individuals. Under constraints of fixed points, limit cycles or iteration sequences, the algorithm simultaneously acquires both the topology and weights for Hopfield neural network by solving inequalities. It copes with the limitations of evolving Hopfield learning algorithm. It can also find several optimal solutions. The experimental results also demonstrate the effectiveness of the algorithm.

关 键 词:进化规划 HOPFIELD网 学习算法 神经网络 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象