检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张俊[1] 程春田[1] 杨斌斌[1] 廖胜利[1]
机构地区:[1]大连理工大学土木水利学院,辽宁大连116024
出 处:《水电能源科学》2008年第6期14-16,共3页Water Resources and Power
基 金:国家自然科学基金资助项目(50679011);高校博士点基金资助项目(20050141008)
摘 要:针对常规BP算法收敛速度慢和难以获得全局最优的不足,将网络误差函数的改变量引入权值和偏移值的调整,采用自适应学习速率和自适应动量因子调整策略,建立了基于多层感知器神经网络(MLP—ANN)的水文预报模型。采用自相关函数(ACF)和交叉相关函数(CCF)确定网络输入因子并使用试错法优化网络结构。以湖南省双牌水库日入库流量预测为应用实例,并将模拟结果与常规BP网络模型和新安江模型进行对比分析。结果表明,改进模型收敛速度快、预报精度高。According to the slow learning convergence and local minimum of conventional BP (Back Propagation) algorithm, an improved learning strategy combining the error function variation with the adjustment of weights matrix and biases matrix was proposed and a multilayer perceptron artificial neural networks (MLP-ANN) model based on this self-adaptive algorithm was developed for hydrological forecasting. The auto-correlation function (ACF) and cross-correlation function (CCF) analysis was used to determine the predictors and the trial-and-error measure was taken to optimize the network structure. The Shuangpai reservoir in Hunan province was selected as an example to demonstrate the modeling and the forecasting result was compared with that of conventional BP model and Xin' anjiang model. The experimental results show that the improved BP model is much more efficient in time saving and global optimization, and the forecasting accuracy is much better than that of the other two models.
关 键 词:降雨一径流模拟 BP神经网络 自适应算法 新安江模型 非线性系统模拟
分 类 号:TV12[水利工程—水文学及水资源] TV213
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222