机构地区:[1]Department of General Surgery, First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China [2]Department of Pathology, First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
出 处:《Chinese Medical Journal》2008年第24期2479-2486,共8页中华医学杂志(英文版)
基 金:This study was supported by grants from the National Natural Science Foundation of China (No. 30700813, No. 30470977, No, 30080016), Fundamental Key Science Foundation of Science and Technology Commission of Shanghai Municipality (No. 05JC14029), Public Scientific Sesearch Platform of Hospital of Grade A at the Tertiary Level of Shanghai (No. SHDC12007704) and Youth Science Foundation of Shanghai Health Bureau (No. 034Y03).Acknowledgments: We thank CapitalBio Corporation for performing microarray scanning and Jacqueline Ramirez, Keith Mitchilson for editorial comments.
摘 要:Background As a model for both multistep and multipathway carcinogenesis, colorectal neoplastic progression provides paradigms for researching both oncogenes and tumor suppressor genes (TSGs). However, the mechanism of colorectal cancer (CRC) is not completely understood, and many genes may be involved in the colorectal carcinogenesis. The purpose of this study was to screen for the potential TSGs on chromosome 1q31.1-32.1 in Chinese patients with sporadic colorectal cancer, to explore whether colorectal cancer in the Chinese population has unique genetic alterations and determine whether other putative TSGs exist and contribute to colon carcinogenesis. Methods Six polymorphic microsatellite markers, at a density of approximately one marker in every 1.6 cM, were chosen for refined loss of heterozygosity (LOH) mapping of 1q31.1-32.1. Eighty-three colorectal cancer patients' tumor and normal DNA were analyzed via polymerase chain reaction (PCR) for these microsatellite markers. PCR products were eletrophoresed on an ABI 377 DNA sequencer. Genescan 3.1 and Genotype 2.1 software were used for LOH scanning and analysis. On the basis of refined LOH mapping results, we undertook a microarray-based expression screening to identify tumor association genes in 19 of the CRC cases. Results The average LOH frequency of 1q31.1-32.1 was 24.41%, with the highest frequency of 36.73% (18/49) at D1S2622, and the lowest of 16.42% (11/67) at D1S412. A minimal region of frequent deletion was located within a 2 cM genomic segment at D1S413-D1S2622. There was no significant association between LOH of any marker in the studied regions and the clinicopathological data (patient sex, age, tumor size, growth pattern, or Dukes stage). On the basis of refined mapping results, we chose 25 genes located in the D1S413-D1S2622 (1q31.3-32.1) region and presented a microarray-based high throughput screening approach in 19 sporadic CRC cases to identify candidate CRC related tumor suppressor genes. This study found 4Background As a model for both multistep and multipathway carcinogenesis, colorectal neoplastic progression provides paradigms for researching both oncogenes and tumor suppressor genes (TSGs). However, the mechanism of colorectal cancer (CRC) is not completely understood, and many genes may be involved in the colorectal carcinogenesis. The purpose of this study was to screen for the potential TSGs on chromosome 1q31.1-32.1 in Chinese patients with sporadic colorectal cancer, to explore whether colorectal cancer in the Chinese population has unique genetic alterations and determine whether other putative TSGs exist and contribute to colon carcinogenesis. Methods Six polymorphic microsatellite markers, at a density of approximately one marker in every 1.6 cM, were chosen for refined loss of heterozygosity (LOH) mapping of 1q31.1-32.1. Eighty-three colorectal cancer patients' tumor and normal DNA were analyzed via polymerase chain reaction (PCR) for these microsatellite markers. PCR products were eletrophoresed on an ABI 377 DNA sequencer. Genescan 3.1 and Genotype 2.1 software were used for LOH scanning and analysis. On the basis of refined LOH mapping results, we undertook a microarray-based expression screening to identify tumor association genes in 19 of the CRC cases. Results The average LOH frequency of 1q31.1-32.1 was 24.41%, with the highest frequency of 36.73% (18/49) at D1S2622, and the lowest of 16.42% (11/67) at D1S412. A minimal region of frequent deletion was located within a 2 cM genomic segment at D1S413-D1S2622. There was no significant association between LOH of any marker in the studied regions and the clinicopathological data (patient sex, age, tumor size, growth pattern, or Dukes stage). On the basis of refined mapping results, we chose 25 genes located in the D1S413-D1S2622 (1q31.3-32.1) region and presented a microarray-based high throughput screening approach in 19 sporadic CRC cases to identify candidate CRC related tumor suppressor genes. This study found 4
关 键 词:tumor suppressor gene sporadic colorectal cancer loss of heterozygosity CSRP1
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...