检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《科学技术与工程》2009年第1期11-15,共5页Science Technology and Engineering
基 金:国家自然科学基金(60874063);黑龙江省教育厅科学技术项目(11521124);黑龙江省电子工程重点实验室项目(DZZD2006-16)资助
摘 要:对于带未知噪声统计和相关噪声的多传感器线性离散定常随机系统,通过左素分解将观测过程表为两个滑动平均(MA)过程之和,利用解相关函数矩阵方程组方法得到系统的噪声方差、相关阵及互协方差的在线估计器。基于观测过程的采样相关函数的遍历性证明了噪声统计估值器是强一致的。一个两传感器带相关噪声系统的仿真例子说明了方法的有效性。For the multisensor linear discrete time-invariant stochastic systems with unknown noise statistics and correlated noises, the new measurement processes can be described by the sum of two moving average (MA) processes by a left-coprime decomposition. The on-line estimators of the noise variances,correlated matrices, and cross-covariances are obtained by solving the matrix equations for correlation functions, and based on the ergodicity of sampled correlation functions of the new measurement processes, the strong consistent estimation of the noise statistics is proved. A simulation example for a two-sensor system with correlated noises shows effectiveness of the proposed approach.
分 类 号:O211.64[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.202.216