检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州理工大学计算机与通信学院,兰州730050
出 处:《科学技术与工程》2009年第2期460-464,共5页Science Technology and Engineering
基 金:甘肃省自然基金(2007GS04782)资助
摘 要:提出了一种新的二次特征提取的方法应用于说话人语音辨识。首先,通过基于熵的特征筛选方法,有效地剔除不重要或者噪声特征,消除语音特征的冗余,并获得其重要性排序,减少语音特征矢量的维数。然后,采用Fisher准则进一步进行参数选择,按Fisher比的大小选择特征向量作为投影轴,将高维空间中的特征矢量映射到低维的特征判别空间,然后以SVM作为分类器实现说话人辨识系统。实验结果表明,本文提出的方法在不影响识别率的情况下可以对输入数据有效降维,在噪音环境下取得了较好的识别效果,增加了系统的鲁棒性。A novel method based on combining a secondary feature extraction method for speaker identification is proposed. Firstly, the entropy-based feature selection approach is exploited to reduce the dimension of the input vectors ,by which an important feature subset can be obtained, whilst the redundancy and relevance of the voice attributes can be eliminated effectively. Secondly, fisher discriminant criterion is used for parametric selection. The feature vectors are chosen according to their fisherby ratio and are used as projection vectors. Then the feature vectors in High-dimensional space are mappedto low-dimensional determination space. Finally, SVM is used as the classifier to complement the recognition system. The experimental results show that the storge can be reduced remarkably without deteriorating the recognition performance by the proposed method compared with other reduced algorithms. Whilst, it increases the robustness of the identification system.
关 键 词:说话人识别 基于熵的特征选择 支持向量机 FISHER鉴别准则
分 类 号:TP391.42[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33