求解双曲型守恒律的五阶松弛格式  

A fifth order relaxation scheme for hyperbolic conservation laws

在线阅读下载全文

作  者:陈建忠[1] 史忠科[1] 封建湖[2] 胡彦梅[2] 

机构地区:[1]西北工业大学,陕西西安710072 [2]长安大学理学院,陕西西安710064

出  处:《空气动力学学报》2008年第4期508-512,共5页Acta Aerodynamica Sinica

基  金:国家自然科学基金项目(60134010)

摘  要:给出了一种求解一维双曲型守恒律的五阶松弛格式。该格式以五阶WENO重构和显隐式Runge-Kutta方法为基础。本文格式保持了松弛格式简单的优点,即不用Riemann解算器和计算非线性通量函数的雅可比矩阵。用该格式对一维Euler方程进行了数值试验,并与三阶和四阶松弛格式的计算结果进行了比较,结果表明本文的格式具有更低的数值耗散和更高的分辨率。For hyperbolic conservation laws,a fifth-order relaxation scheme was presented. The scheme is based on the fifth-order weighted essentially nonoscillatory(WENO) reconstruction and the implicit-explicit Runge-Kutta scheme. The resulting scheme does not require Riemann solvers and the computation of Jacobians,so it enjoys the advantages of relaxation schemes. The one-dimensional Euler equations subject to different initial data are used to test the present scheme. To illustrate the improvement of our method, the results are compared with numerical solutions computed by the third-order relaxation scheme. The numerical experiments demonstrate that the present method has the higher than the third-order relaxation scheme. shock resolution and smaller numerical dissipation

关 键 词:双曲型守恒律 松弛格式 WENO重构 

分 类 号:V211.3[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象