速度自适应粒子群优化算法在故障诊断中的应用  被引量:4

Application of Particle Swarm Optimization Algorithm With Adaptive Velocity to Fault Diagnosis

在线阅读下载全文

作  者:魏秀业[1] 潘宏侠[1] 

机构地区:[1]中北大学机械工程与自动化学院,山西太原030051

出  处:《太原理工大学学报》2009年第1期47-50,共4页Journal of Taiyuan University of Technology

基  金:国家自然科学基金资助项目(50575214)

摘  要:在原始粒子群优化算法(PSO)中设置动态最大限制速度基础上,提出一种速度自适应粒子群优化算法。经过神经网络的测试表明,该算法在收敛速度和精度上都优于原始算法,并且参数选取灵活,容易实现。将改进算法应用于实验室变速箱的神经网络故障诊断系统中,并与PSO和BP算法进行了比较,得出该算法不仅对变速箱故障的识别准确率比较高,而且故障诊断的精度和效率也较高。Particle swarm optimization algorithm with adaptive velocity(VPSO) has been proposed, based on the setting of moving maximum limiting velocity in original particle swarm optimization (PSO) algorithm. The testing results by neural network show that this algorithm is better than original PSO in convergent speed and accuracy, and its parameter selection is flexible and easily realized. The modified algorithm has been applied to fault diagnosis system of neural network for an experimental gearbox, and compared with PSO and BP algorithm. The conclusion is that VPSO applying to fault diagnosis system not only has higher discrimination for gearbox faults, but also greatly improve the accuracy and efficiency of fault diagnosis.

关 键 词:粒子群优化 群体智能 神经网络 故障诊断 

分 类 号:TH132[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象